

Spreading knowledge – improving outcomes

Continuous vs Intermittent β-Lactam Antibiotic Infusions

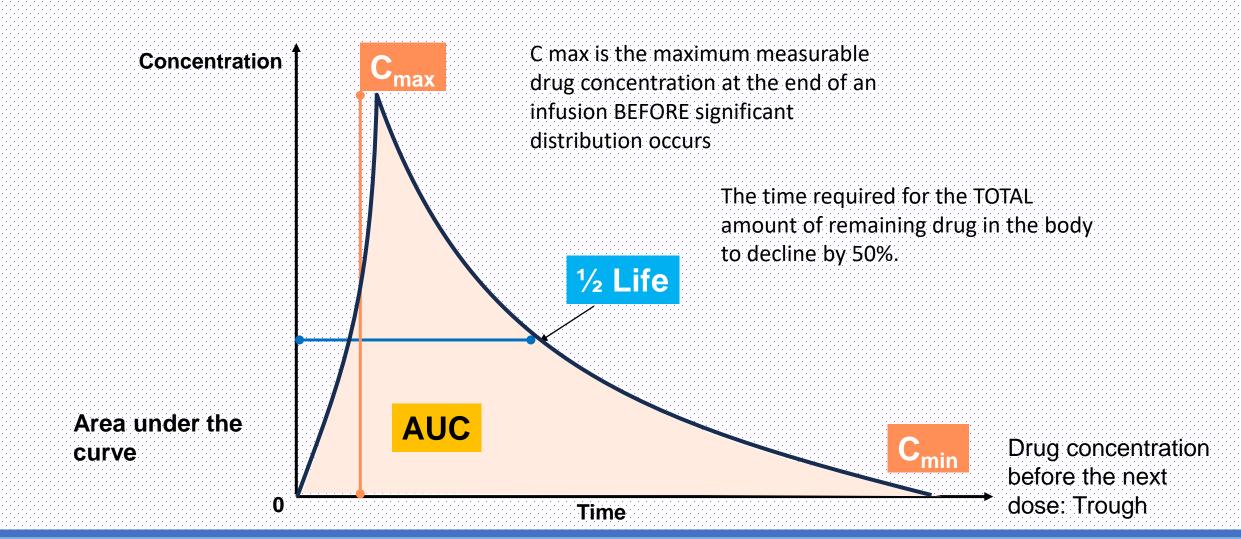
MAZEN KHERALLAH, MD, FCCP

Outline

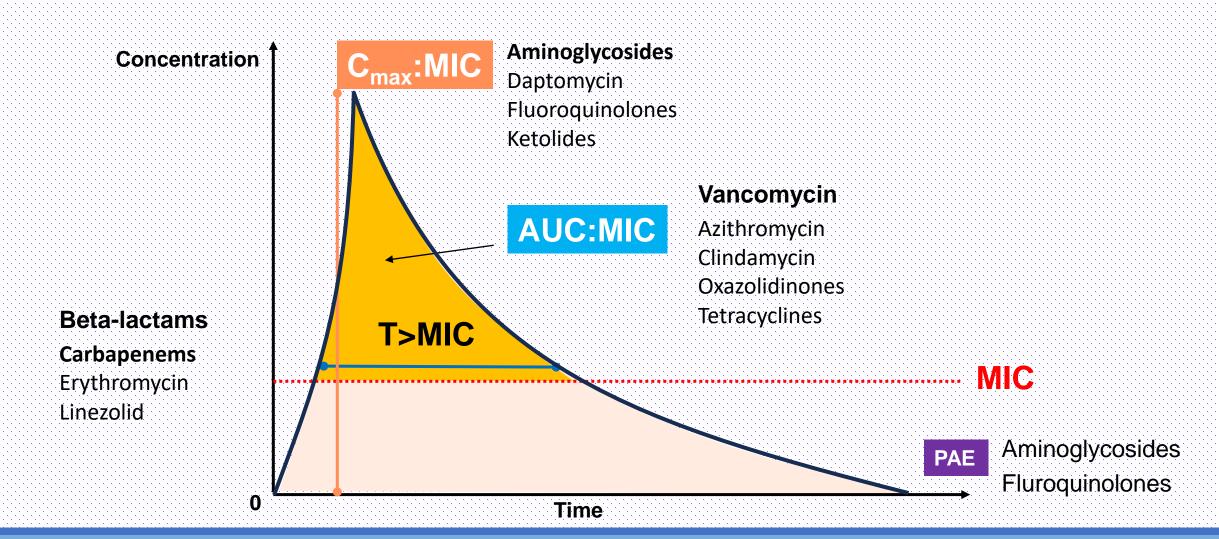
Pharmacodynamic properties of medication

Pharmacodynamic parameters of antibiotics

Pharmacodynamic therapeutic goals of antibiotics

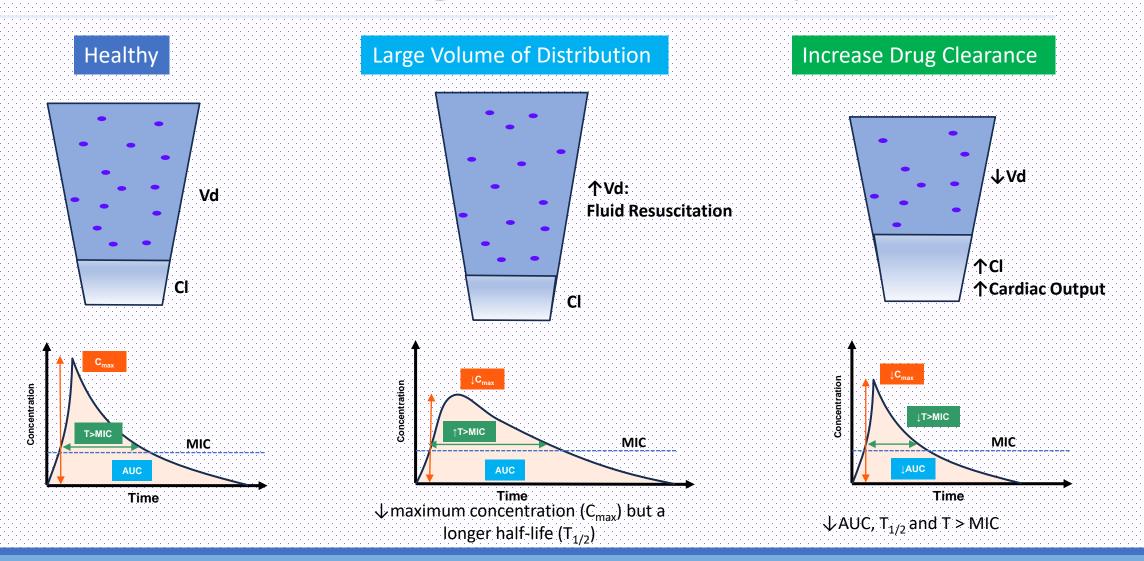

Rationales for continuous infusion of beta lactams

- Pharmacokinetic changes of antibiotics in septic patients
- Higher MIC of organisms


Evolving evidence of continuous infusion of beta lactam agents

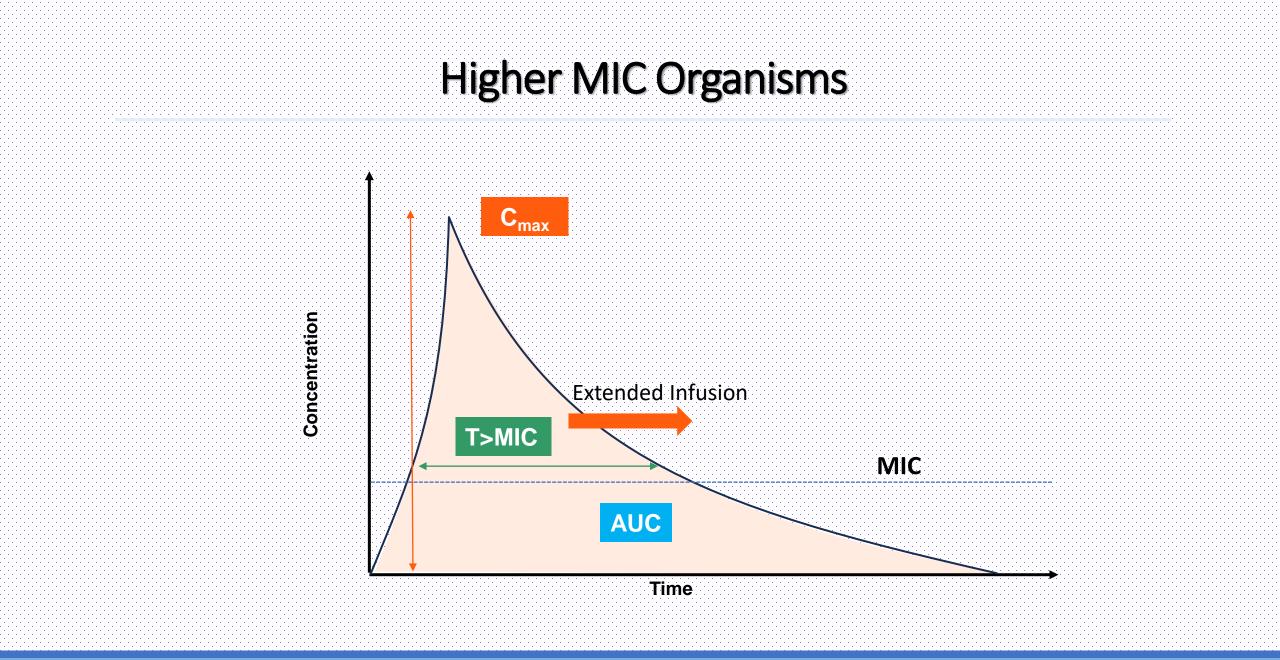
Pharmacodynamic Parameters

Pharmacodynamic Parameters of Antibiotics



Pharmacodynamic Therapeutic Goals of Antibiotics

Parameter correlating with efficacy	Cmax:MIC	T>MIC	AUC:MIC	PAE	
Antibiotic	Aminoglycosides Colistin Daptomycin Fluoroquinolones Ketolides	Carbapenems Cephalosporins Penicillins Erythromycin	Vancomycin Fluroquinolones	Aminoglycosides Fluroquinolones	
Organism killing	Concentration- dependent	Time-dependent	Concentration/time -dependent	Post-antibiotic effect	
Therapeutic goal High dose: C _{max} /MIC>10		Higher frequency, prolonged duration C _{min} >MIC	Optimize exposure to antibiotic: C _{max} /MIC>10 and C _{min} >MIC	Lower frequency	



Pharmacokinetic Changes of Antibiotics in Septic Patients

Gonçalves-Pereira and Póvoa Critical Care 2011 15:R206

CU

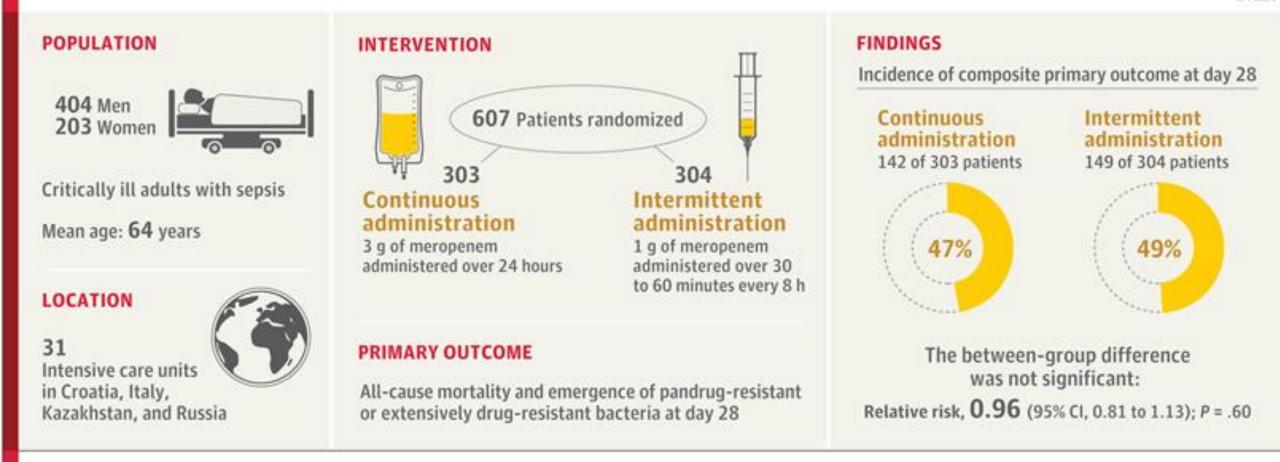
Continuous vs Intermittent Infusion of β-Lactams in Critically III Septic Patients

β-Lactam administration via prolonged (with an infusion time of 4 hours) or continuous infusion will lead to sustained concentrations throughout the dosing interval, longer time above MIC, and improved bacterial eradication. But does a better pharmacokinetic target mean a better clinical outcome?

CONTINUOUS VS INTERMITTENT ADMINISTRATION OF BETA-LACTAM ANTIBIOTICS IN CRITICALLY ILL PATIENTS WITH SEPSIS

Summary of Evidence

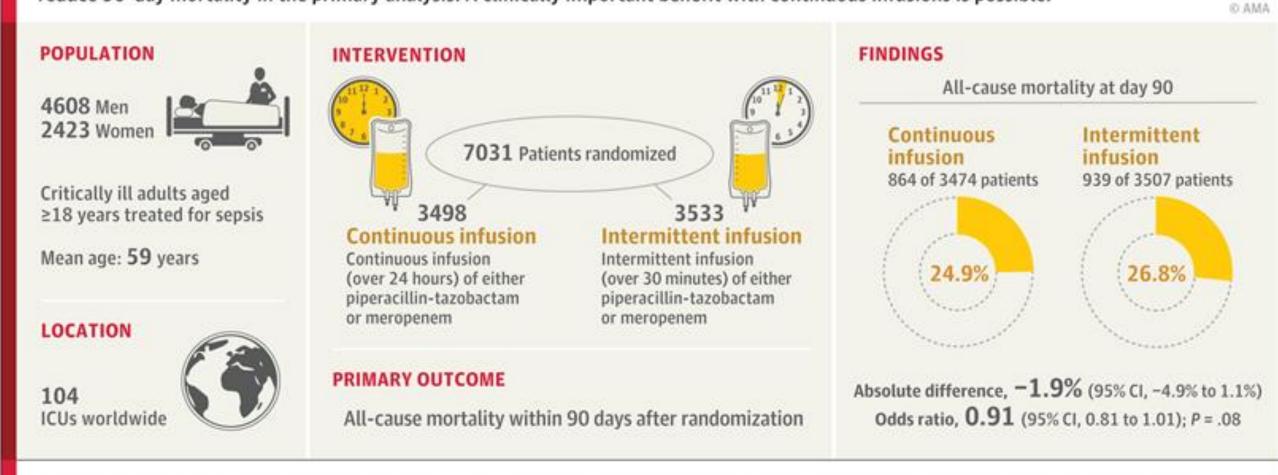
CONCLUSION


Prolonged infusions of β-lactam antibiotics were associated with a lower risk of 90-day mortality and ICU mortality (high certainty), and higher clinical cure rates (moderate certainty) compared to intermittent infusions among adults in the intensive care unit who had sepsis or septic shock.

QUESTION Does continuous administration of meropenem reduce a composite of mortality and emergence of drug-resistant bacteria among critically ill patients with sepsis compared with intermittent administration?

CONCLUSION Continuous administration of meropenem, compared with intermittent administration, does not improve clinically relevant outcomes in critically ill patients with sepsis.

© AMA



Monti G, Bradić N, Marzaroli M, et al; for the MERCY Investigators. Continuous vs intermittent meropenem administration in critically ill patients with sepsis: the MERCY randomized clinical trial. JAMA. Published online June 16, 2023. doi:10.1001/jama.2023.10598

JAMA

QUESTION Is there a difference in mortality between continuous and intermittent infusions of β -lactam antibiotics in critically ill patients with sepsis?

CONCLUSION In critically ill patients with sepsis, continuous vs intermittent β-lactam antibiotic infusions did not significantly reduce 90-day mortality in the primary analysis. A clinically important benefit with continuous infusions is possible.

Dulhunty JM, Brett SJ, De Waele JJ, et al; BLING III Study Investigators. Continuous vs intermittent β-lactam antibiotic infusions in critically ill patients with sepsis: the BLING III randomized clinical trial. JAMA. Published June 12, 2024. doi:10.1001/jama.2024.9779

Study	Dead (prolonged)	Alive (prolonged)	Dead (intermittent)	Alive (intermittent)	Absolute difference (95% CI)	Risk ratio (95% CI)	prolonged	Favors intermittent infusion	Weight %
Georges et al, ³³ 2005	3	21	3	20	-0.01 (-0.02 to 0.01)	0.96 (0.21 to 4.27)	<		→ 0.8
Rafati et al, ³⁴ 2006	5	15	6	14	-0.05 (-0.09 to -0.01)	0.83 (0.30 to 2.29)			→ 1.6
Roberts et al, ³⁵ 2007	3	26	0	28	0.10 (0.09 to 0.11)	6.77 (0.37 to 125.32)		→ 0.2
Roberts et al, ³⁶ 2009	2	3	0	5	0.33 (0.23 to 0.44)	5.00 (0.30 to 83.69)			→ 0.2
Chytra et al, ³⁸ 2012	21	99	28	92	-0.06 (-0.06 to -0.05)	0.75 (0.45 to 1.24)			5.1
Dulhunty et al, ³⁹ 2013	3	27	6	24	-0.10 (-0.12 to -0.08)	0.50 (0.14 to 1.82)	< ∎		1.1
Dulhunty et al, ⁴⁰ 2015	54	156	60	158	-0.02 (-0.02 to -0.01)	0.93 (0.68 to 1.28)			9.8
Jamal et al, ⁴¹ 2015	4	4	5	3	-0.12 (-0.24 to -0.01)	0.80 (0.33 to 1.92)			2.1
Jamal et al, ⁴² 2015	5	3	8	0	-0.33 (-0.40 to -0.27)	0.65 (0.38 to 1.12)		_	4.6
Abdul-Aziz et al, ⁴³ 2016	18	52	26	44	-0.11 (-0.13 to -0.10)	0.69 (0.42 to 1.14)		_	5.2
Zhao et al, ⁴⁴ 2017	7	18	8	17	-0.04 (-0.07 to -0.01)	0.88 (0.37 to 2.05)			2.2
Khan and Omar, ²² 2023	12	40	20	29	-0.18 (-0.19 to -0.16)	0.57 (0.31 to 1.03)			4.0
Mirjalili et al, ⁴⁵ 2023	14	54	25	43	-0.16 (-0.17 to -0.15)	0.56 (0.32 to 0.98)			4.4
Monti et al, ¹⁴ 2023	127	176	127	177	0.00 (0.00 to 0.00)	1.00 (0.83 to 1.21)	-		17.6
Saad et al, ⁴⁶ 2024	8	22	12	18	-0.13 (-0.16 to -0.10)	0.67 (0.32 to 1.39)			2.8
Álvarez-Moreno et al, ⁴⁷ 2024	2	10	2	11	0.01 (-0.03 to 0.06)	1.08 (0.18 to 6.53)	•	• • • • • • • • • • • • • • • • • • •	0.6
Dulhunty et al, ¹⁵ 2024	864	2610	939	2568	-0.02 (-0.02 to -0.02)	0.93 (0.86 to 1.01))	37.4
Bayesian						\frown			
Vague priors ^a					-0.03 (-0.08 to 0.00)	0.86 (072 to 0.98))	
Semi-informative priors ^a					-0.04 (-0.10 to 0.01)	0.86 (0.73 to 0.98)			
Frequentist									
Sidik-Jonkman					-0.05 (-0.10 to 0.00)	0.80 (0.67 to 0.94)			
DerSimonian-Laird					-0.03 (-0.07 to 0.00)	0.91 (0.85 to 0.97)	\blacklozenge		
							0.3 1	2	3
							Risk ratio (-

Continuous vs Intermittent Infusion of β-Lactams in Critically III Septic Patients

Prolonged infusions of β-lactam antibiotics were associated with a lower risk of 90day mortality and ICU mortality (high certainty), and higher clinical cure rates (moderate certainty) compared to intermittent infusions among adults in the intensive care unit who had sepsis or septic shock

